Gambar 1

Go to susiloe.blogspot.com

Gambar 2

Go to susiloe.blogspot.com

Gambar 3

Go to susiloe.blogspot.com

Gambar 4

Go to susiloe.blogspot.com

Gambar 5

Go to susiloe.blogspot.com

IKLAN

ads ads ads ads

Rabu, 04 April 2012

Membuat Keluaran berupa detak( Timer )

kita sering jam digital dalam kehidupan sehari-hari . bagaimana kita bisa membuat detik sehingga jam busa stabil,,, untuk membuat keluaran berupa detak kita bisa menggunakan IC 555 sebagai timer. setalah saya coba pada analisis EWB ternyata IC 555 cukup stabil. sehingga kita bia menggunakan IC ini untuk dipunakan sebagai penimbul sinyal detak.

untuk lampu indikatoya kita bisa gunakan led ataupun kalian bisa mengeceknya melalui Osiloskop untuk mengetahui apakah frekuesinya 1 sekon . kita bisa membuat frekuensi seperti yang kita harapkan dengan mengubah nilai kapasitor ataupun resistornya.
SELAMAT MENCOBA !!!!!!

tunggu posting selanjutnya untuk buat Counter dan rangkaian jam digital...

Minggu, 01 April 2012

MOBIL IRIT KREASI ANAK BANGSA

Surabaya- Kemampuan putra-putri bangsa kita memang tak bisa diragukan lagi. mulai dari mobil ESEMKA yang meripakan kreasi siswa-siswa SMK. Mari kita lihat gambar disampig, itulah potret mobil yang sanagt irit dan bisa saya katakan paling irit, mobil ini merupakan mobil kreasi mahasiswa ITS(Institut Teknologi Sepuluh November TIDAKKAH PEMERINTAH SADAR POTENSI NEGARA KITA. Inilah anak bangsa yang patut kita apresiasi, bukan politisi yang cari muka disaat ingin pemilu sedangkan kesejahteraan rakyat masih ter abaikan.
Beberapa kali ITS membuat kendaraan paling irit bahan bakar. Kini Tim Sapu Angin yang sudah berkali-kali sukses dalam berbagai kompetisi kembali menunjukan kebolehannya. Tim ini membawa mobil Sapu Angin 6 dan Sapu Angin 7 dalam ajang bergengsi Shell Eco Marathon (SEM) Asia 2012 Juli mendatang di Malaysia. Kedua mobil Sapu Angin tersebut diberi nama Paijo atau dikenal dengan sebutan SA 6 (Sapu Angin 6) dan SA 7 (Sapu Angin 7). SA 6 dan SA7 merupakan generasi penerus dari proyek Sapu Angin sebelumnya. Masih mengusung konsep yang sama, kedua mobil ini merupakan mobil hemat bahan bakar dan ramah lingkungan.

”Kali ini Sapu Angin dirancang dengan efisiensi bahan bakar lebih tinggi. Artinya mobil SA 6 dan SA 7 akan jauh lebih hemat dari Sapu Angin generasi sebelumnya tahun 2010 dan 2011,” kata Herman Sasongko Pembantu Rektor (PR) 1 ITS dalam acara launching SA 6 dan SA 7 di gedung Robotika ITS. Target capaian hemat energi untuk SA 6 dan SA 7 lebih bagus.

Jika tahun lalu prototipe SA 6 hanya dapat menempuh jarak 353 km/liter,kini mobil berbahan bakar bensin ini ditargetkan dapat menempuh jarak 2.000 km/liter. Sedangkan untuk SA 7, jika tahun sebelumnya hanya dapat menempuh jarak 149,8 km/liter, kini ditargetkan dapat menempuh jarak hingga 700 km/liter. ”Jika target ini bisa dicapai ketika keduanya berlaga di Sirkuit International Sepang Malaysia, SA 6 dan SA 7 dapat menjadi mobil hemat bahan bakar dan ramah lingkungan nomor satu di Asia. Ini tentu sangat membanggakan, kami optimis hal itu terjadi,”kata Herman.

ITS rencananya bakal menurunkan tiga tim andalannya untuk mengikuti tiga kategori berbeda dalam SEM Asia 2012. Yakni Tim SA 6,Tim SA 7, dan Tim Antasena. SA 6 akan berlaga di kelas prototype berbahan bakar bensin. SA 7 yang berbahan bakar Fame Acid Methyl Ester 100% akan berpartisipasi di kelas Urban Concept. Sedangkan Tim Antasena di kelas Hidrogen dengan Fuel Cell.

”SA 6 dan SA 7 menggunakan alumunium alloy pada chasis, dan fiberglass atau polyurethane foam untuk bodinya. SA 6 berdimensi 280 cm/75 cm/65 cm dengan target berat total 35 kg. Kami targetkan dapat menempuh jarak 2.000 km/liter,” papar Wawan Aries Widodo pembimbing Tim SA 6. Dalam kesempatan yang sama pembimbing Tim SA7,Wintantyo membeberkan SA 7 ini berdimensi 260 cm/125 cm/115 cm dengan target berat total 100 kg. Mobil yang satu ini menggunakan mesin diesel 210 cc dan sistem pembakaran direct injection. ”Hari ini (kemarin) kami test drive untuk mendemonstrasikan performa SA 6 dan SA 7. Untuk SA 7 hasilnya mendekati target yakni 700 km/ liter. Kami akan terus evaluasi hingga pertandingan pada Juli mendatang,” beber Wityanto. Pada kesempatan ini ITS akan menurunkan tim terbaik.

Sesuai rencana ada 15 awak kru dari tim tersebut yang diberangkatkan ke Malaysia. Mereka berangkat pada 3 Juli mendatang, sedangkan kompetisinya sendiri digelar pada 4-7 Juli 2012. Untuk mobil yang dilombakan, ITS akan memberangkatkan satu bulan sebelumnya. Artinya peralatan dan mobil akan berangkat Juni.“Kami optimis bisa menang,mobil-mobil ini lebih efisien dan dinamis,” kata Manager Utama Sapu Angin ITS Yoga Dwi Widagdo. dikutip dari Harian seputar Indonesia
 

Kamis, 22 Maret 2012

PROMES SMK TERBARU

download program semester untuk SMK disini

Download Promes SMK

rancangan minggu yang di buat oleh guru dalam jangka waktu satu semester
klik disini untuk download

Model-Model Mengajar

setip guru pasti ingin memberikan yang terbaik bagi anak didiknya. jadi seorang guru pasttiya harus mengetahui berbagai macam model mengajar supaya proses belajar mengajar menjadi lebih menarik dan terkesan tidak membosankan . kemudian guru bisa mengembangkanya... baca selengkapnya disini

Rabu, 11 Januari 2012

Relativity

Scope

The theory of relativity transformed physics and astronomy during the 20th century. When first published, relativity superseded a 200-year-old theory of mechanics elucidated by Isaac Newton. It changed perceptions. However, Einstein denied that Newton could ever be superseded by his own work.
The theory of relativity overturned the concept of motion from Newton's day, by positing that all motion is relative. Time was no longer uniform and absolute. Physics could no longer be understood as space by itself, and time by itself. Instead, an added dimension had to be taken into account with curved spacetime. Time now depended on velocity, and contraction became a fundamental consequence at appropriate speeds.
In the field of physics, relativity catalyzed and added an essential depth of knowledge to the science of elementary particles and their fundamental interactions, along with ushering in the nuclear age. With relativity, cosmology and astrophysics predicted extraordinary astronomical phenomena such as neutron stars, black holes, and gravitational waves.

Two-theory view

The theory of relativity was representative of more than a single new physical theory. It affected the theories and methodologies across all the physical sciences. However, as stated above, this is more likely perceived as two separate theories. There are some explanations for this. First, special relativity was published in 1905, and the final form of general relativity was published in 1916.
Second, special relativity fits with and solves for elementary particles and their interactions, whereas general relativity solves for the cosmological and astrophysical realm (including astronomy).
Third, special relativity was widely accepted in the physics community by 1920. This theory rapidly became a significant and necessary tool for theorists and experimentalists in the new fields of atomic physics, nuclear physics, and quantum mechanics. Conversely, general relativity did not appear to be as useful. There appeared to be little applicability for experimentalists as most applications were for astronomical scales. It seemed limited to only making minor corrections to predictions of Newtonian gravitation theory. Its impact was not apparent until the 1930s.
Finally, the mathematics of general relativity appeared to be incomprehensibly dense. Consequently, only a small number of people in the world, at that time, could fully understand the theory in detail. This remained the case for the next 40 years. Then, at around 1960 a critical resurgence in interest occurred which has resulted in making general relativity central to physics and astronomy. New mathematical techniques applicable to the study of general relativity substantially streamlined calculations. From this physically discernible concepts were isolated from the mathematical complexity. Also, the discovery of exotic astronomical phenomena in which general relativity was crucially relevant, helped to catalyze this resurgence. The astronomical phenomena included quasars (1963), the 3-kelvin microwave background radiation (1965), pulsars (1967), and the discovery of the first black hole candidates (1971).

On the theory of relativity

Einstein stated that the theory of relativity belongs to the class of "principle-theories". As such it employs an analytic method. This means that the elements which comprise this theory are not based on hypothesis but on empirical discovery. The empirical discovery leads to understanding the general characteristics of natural processes. Mathematical models are then developed which separate the natural processes into theoretical-mathematical descriptions. Therefore, by analytical means the necessary conditions that have to be satisfied are deduced. Separate events must satisfy these conditions. Experience should then match the conclusions.
The special theory of relativity and the general theory of relativity are connected. As stated below, special theory of relativity applies to all inertial physical phenomena except gravity. The general theory provides the law of gravitation, and its relation to other forces of nature.

Special relativity

USSR stamp dedicated to Albert Einstein
Special relativity is a theory of the structure of spacetime. It was introduced in Einstein's 1905 paper "On the Electrodynamics of Moving Bodies" (for the contributions of many other physicists see History of special relativity). Special relativity is based on two postulates which are contradictory in classical mechanics:
  1. The laws of physics are the same for all observers in uniform motion relative to one another (principle of relativity).
  2. The speed of light in a vacuum is the same for all observers, regardless of their relative motion or of the motion of the source of the light.
The resultant theory agrees with experiment better than classical mechanics, e.g. in the Michelson-Morley experiment that supports postulate 2, but also has many surprising consequences. Some of these are:
  • Relativity of simultaneity: Two events, simultaneous for one observer, may not be simultaneous for another observer if the observers are in relative motion.
  • Time dilation: Moving clocks are measured to tick more slowly than an observer's "stationary" clock.
  • Length contraction: Objects are measured to be shortened in the direction that they are moving with respect to the observer.
  • Mass–energy equivalence: E = mc2, energy and mass are equivalent and transmutable.
  • Maximum speed is finite: No physical object, message or field line can travel faster than the speed of light in a vacuum.
The defining feature of special relativity is the replacement of the Galilean transformations of classical mechanics by the Lorentz transformations. (See Maxwell's equations of electromagnetism and introduction to special relativity).

General relativity

General relativity is a theory of gravitation developed by Einstein in the years 1907–1915. The development of general relativity began with the equivalence principle, under which the states of accelerated motion and being at rest in a gravitational field (for example when standing on the surface of the Earth) are physically identical. The upshot of this is that free fall is inertial motion; an object in free fall is falling because that is how objects move when there is no force being exerted on them, instead of this being due to the force of gravity as is the case in classical mechanics. This is incompatible with classical mechanics and special relativity because in those theories inertially moving objects cannot accelerate with respect to each other, but objects in free fall do so. To resolve this difficulty Einstein first proposed that spacetime is curved. In 1915, he devised the Einstein field equations which relate the curvature of spacetime with the mass, energy, and momentum within it.
Some of the consequences of general relativity are:
  • Clocks run more slowly in deeper gravitational wells. This is called gravitational time dilation.
  • Orbits precess in a way unexpected in Newton's theory of gravity. (This has been observed in the orbit of Mercury and in binary pulsars).
  • Rays of light bend in the presence of a gravitational field.
  • Rotating masses "drag along" the spacetime around them; a phenomenon termed "frame-dragging".
  • The Universe is expanding, and the far parts of it are moving away from us faster than the speed of light.
Technically, general relativity is a metric theory of gravitation whose defining feature is its use of the Einstein field equations. The solutions of the field equations are metric tensors which define the topology of the spacetime and how objects move inertially